Сложная функция суперпозиция. «Учебник по дискретной математике. Суперпозиция функций. Замыкание набора функции.Замкнутые классы функций. Полные наборы. Базисы. Счетные и несчетные множества

Однотактные (не содержащие элементов памяти) дискретные логические устройства реализуют на выходе некоторый набор функций алгебры логики `F m = (F 1 ,F 2 ,…,F m ), которые в каждый момент времени зависят только от состояния входов устройства `х n = (x 1 ,x 2 ,…,x n ): `F m = `F m (`х n ). Практически такие устройства проектируют и изготавливают из отдельных неделимых элементов, реализующих некоторый набор (систему) {f } элементарных функций алгебры путем присоединения выходов одних элементов ко входам других.

При проектировании логических устройств актуальными являются следующие вопросы.

1. Задана система элементарных функций {f }. Какие выходные функции F i можно получить, используя функции из {f }?

2. Задано множество выходных булевых функций {F } (в частности, равное всему множеству функций алгебры логики Р 2). Какой должна быть исходная система элементарных функций {f }, обеспечивающая возможность получения на выходе любой из функций множества {F }?

Для обоснованного ответа на данные вопросы используют понятия суперпозиции, замкнутости и полноты систем функций.

Определение. Рассмотрим множество логических связок {F }, соответствующее некоторой системе функций {f }. Суперпозицией над {f } называется любая функция j, которую можно реализовать формулой над {F }.

Практически суперпозицию можно представить как результат подстановки функций из {f } в качестве аргументов в функции из этого же множества.

Пример 1 . Рассмотрим систему функций {f }= {f 1 (х ) =`х, f 2 (х,у )= х &у, f 3 (х,у )= х Úу } . Подставляя в функцию f 3 (х,у ) вместо первого аргумента х функцию f 1 (х ), вместо второго - f 2 (х,у ), получим суперпозицию h (х,у )= f 3 (f 1 (х ), f 2 (х,у ))=Ú х & у . Физическая реализация подстановки дана на рис.1.18.

Определение. Пусть М -некоторое множество функций алгебры логики(P 2). Множество всех суперпозиций над М называется замыканием множества М и обозначается [М ]. Получение [М ]по исходному множеству М называется операцией замыкания . Множество М называется функционально замкнутым классом , если [М ] = М . Подмножество m Í M называется функционально полной системой в М , если [m ] = М .

Замыкание [М ]представляет собой все множество функций, которое можно получить из М путем применения операции суперпозиции, т.е. всех возможных подстановок.

Замечания. 1. Очевидно, любая система функций {f } является функционально полной в себе самой.

2 . Без ограничения общности можно считать, что тождественная функция f (х ), не изменяющая значений истинности переменных, изначально входит в состав любой системы функций.

Пример 2 . Для рассмотренных ниже систем функций {f } выполнить следующие действия:

1) найти замыкание [f ],

2) выяснить, будет ли система {f } замкнутым классом,

3) найти функционально полные системы в {f }.

Решение .

I. {f }={0}. При подстановке функции {0} в саму себя получаем ее же, т.е. никаких новых функций не образуется. Отсюда следует: [f ] = {f }. Рассмотренная система является функционально замкнутым классом. Функционально полная система в ней одна и равна всей {f }.

II. {f }= {0,Ø }. Подстановка Ø (Ø х )дает тождественную функцию, которая формально не расширяет исходную систему. Однако при подстановке Ø (0) получим тождественную единицу - новую функцию, которой не было в исходной системе: Ø (0)=1. Применение всех других подстановок не приводит к появлению новых функций, например: ØØ 0= 0, 0(Ø х )=0.

Таким образом, применение операции суперпозиции позволило получить более широкое по сравнению с исходным множество функций [f ]={0,Ø ,1}. Отсюда следует строгое вхождение: {f } Ì [f ]. Исходная система {f }не является функционально замкнутым классом. Кроме самой системы {f }других функционально полных систем в ней нет, поскольку в случае её сужения из одной функции f= 0 нельзя путем подстановки получить отрицание, а из одной функции отрицания нельзя получить тождественный нуль.

III. {f } = {& ,Ú ,Ø }.Замыканием данной системы является все множество функций алгебры логики P 2 , так как формулу любой из них можно представить в виде ДНФ либо КНФ, в которых используются элементарные функции {f } = {& ,Ú ,Ø}. Данный факт является конструктивным доказательством полноты рассмотренной системы функций в P 2: [f ] =P 2 .

Поскольку в P 2 содержится бесконечное множество других функций, отличных от {f } = {& ,Ú ,Ø }, то отсюда следует строгое вхождение: {f }Ì[f ]. Рассмотренная система не является функционально замкнутым классом.

Помимо самой системы функционально полными в ней будут подсистемы {f } 1 = {& ,Ø } и {f } 2 = {Ú ,Ø }. Это следует из того, что при помощи правил де Моргана функцию логического сложения Úможно выразить через {& ,Ø},а функцию логического умножения & - через {Ú, Ø}:

(х & у ) = Ø (`х Ú`у ), (х Ú у ) = Ø (х &`у ).

Других функционально полных подсистем в {f } нет.

Проверку полноты подсистемы функций {f } 1 Ì {f }во всей системе {f }можно производить путем сведения {f } 1 к другой, заведомо полной в {f }системе.

Неполноту подсистемы {f } 1 в {f }можно проверить, доказав строгое вхождение [f 1 ] Ì [f ].

Определение. Подмножество m Í M называют функциональным базисом (базисом ) системы М , если [m ] = М , а после исключения из нее любой функции множество оставшихся не полно в М .

Замечание . Базисами системы функций {f} являются все ее функционально полные подсистемы {f} 1 , которые невозможно уменьшить без потери полноты в {f} .

Пример 3 . Для всех систем, рассмотренных в Примере 2, найти базисы.

Решение .В случаях 1 и 2 функционально полными являются только сами системы и сузить их невозможно. Следовательно, они же являются и базисами.

В случае 3 есть две функционально полные в {f }подсистемы {f } 1 = {&,Ø } и {f } 2 ={Ú,Ø }, которые невозможно сократить без потери полноты. Они будут базисами системы {f } = {&,Ú,Ø}.

Определение. Пусть система {f }является замкнутым классом. Ее подмножество {f } 1 Ì {f }называют предполным классом в {f }, если {f } 1 не полно в {f } ([f 1 ] Ì [f ]), а для любой функции jиз системы{f }, не входящей в {f } 1 (jÎ{f } \ {f } 1) справедливо: [j È {f } 1 ] = [f ], т.е. прибавление jк {f } 1 делает ее полной в {f }.

Задачи

1. Проверить замкнутость множеств функций:

а) {Ø }; б) {1, Ø }; в) {(0111); (10)};г) {(11101110); (0110)};д) {(0001); (00000001); (0000000000000001); … }.

2. Проверить полноту систем функций в P 2:

а) {0,Ø }; б) {(0101) , (1010) }; в) {¯ }; г) {(0001) , (1010) }.

3. Найти замыкание системы функций и ее базис:

а) {0 , 1 , Ø }; б) {(1000) , (1010), (0101) }; в) {(0001) , (1110), (10) }; г) {(1010) , (0001), (0111) }.

1.10.2 Функции, сохраняющие константы. Классы Т 0 и Т 1

Определение. Функция f (`х n ) сохраняет 0, если f (0,..., 0) = 0. Функция f (`х n ) сохраняет 1, если f (1, ... , 1) = 1.

Множества функций n переменных, сохраняющих 0 и 1, обозначают, соответственно, Т 0 n и Т 1 n . Все множества функций алгебры логики, сохраняющих 0 и 1, обозначают Т 0 и Т 1 . Каждое из множеств Т 0 и Т 1 является замкнутым предполным классом в Р 2 .

Из элементарных функций в Т 0 и Т 1 одновременно входят, например, &и Ú. Принадлежность любой функции к классам Т 0 , Т 1 можно проверить по первому и последнему значению ее вектора значений в таблице истинности либо непосредственной подстановкой нулей и единиц в формулу при аналитическом задании функции.

Определение. Дублирующей называют такую подстановку, при которой вместо нескольких независимых переменных в функцию подставляют одну и ту же переменную. При этом величины переменных в наборах, которые раньше принимали значения независимо друг от друга, всегда будут одинаковыми.

ЗАДАЧИ

1.Проверить принадлежность к классам Т 0 и Т 1 функций:

а) обощенного сложения, б) обощенного умножения, в) констант, г) ху Ú yz , д) х ® у ® ху , е) х Å у , ж)( х 1 ÅÅ х n) ® ( y 1 ÅÅ y m) при n,m Î N.

2. Доказать замкнутость каждого из классов Т 0 и Т 1 .

3. Доказать, что если f (`х n ) ÏТ 0 , то из нее путем дублирующей подстановки можно получить константу 1 либо отрицание.

4. Доказать, что если f (`х n ) ÏТ 1 , то из нее путем дублирующей подстановки можно получить константу 0 либо отрицание.

5. Доказать предполноту каждого из классов Т 0 и Т 1 (например, сведением дополненной системы к {f } = {& ,Ú ,Ø }).

6. Найти мощность классов Т 0 n и Т 1 n .

Пусть имеется функция f(x 1 , x 2 , ... , x n) и функции

тогда функцию будем называть суперпозицией функции f(x 1 , x 2 , ... , x n) и функций .

Другими словами: пусть F = { f j } - набор функций алгебры логики, не обязательно конечный. Функция f называется суперпозицией функций из множества F или функцией над F, если она получена из функции путем замены одной или нескольких ее переменных функциями из множества F.

Пример .

Пусть задано множество функций

F = {f 1 (x 1), f 2 (x 1 ,x 2 ,x 3), f 3 (x 1 ,x 2)}.

Тогда суперпозициями функций из F будут, например, функции:

j 1 (x 2 , x 3) = f 3 (f 1 (x 2), f 1 (x 3));

j 2 (x 1 , x 2) = f 2 (x 1 , f 1 (x 1), f 3 (x 1 ,x 2)).

Cовершенная ДНФ - суперпозиция функций из множества

. ð

Определение.

Система функций называется полной , если при помощи операций суперпозиции и замены переменных из функций этой системы может быть получена любая функция алгебры логики. ð

Мы уже имеем некоторый набор полных систем:

;

Так как ;

Так как ;

{x+y, xy, 1}. ð

Как же определить условия, при которых система полна. С понятием полноты тесно связано понятие замкнутого класса.

Замкнутые классы.

Множество (класс) K функций алгебры логики называется замкнутым классом , если оно содержит все функции, получающиеся из K операциями суперпозиции и замены переменных, и не содержит никаких других функций.

Пусть K - некоторое подмножество функций из P 2 . Замыканием K называется множество всех булевых функций, представимых с помощью операций суперпозиции и замены переменных функций из множества K. Замыкание множества K обозначается через [K].

В терминах замыкания можно дать другие определения замкнутости и полноты (эквивалентные исходным):

K- замкнутый класс, если K = [K];

K - полная система, если [K] = Р 2 .

Примеры.

* {0}, {1} - замкнутые классы.

* Множество функции одной переменной - замкнутый класс.

* - замкнутый класс.

* Класс {1, x+y} не является замкнутым классом.

Рассмотрим некоторые важнейшие замкнутые классы.

1. Т 0 - класс функций, сохраняющих 0.

Обозначим через Т 0 класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), сохраняющих константу 0, то есть функций, для которых f(0, ... , 0) = 0.



Легко видеть, что есть функции, принадлежащие Т 0 , и функции, этому классу не принадлежащие:

0, x, xy, xÚy, x+y Î T 0 ;

Из того, что Ï T 0 следует, например, что нельзя выразить через дизъюнкцию и конъюнкцию.

Поскольку таблица для функции f из класса Т 0 в первой строке содержит значение 0, то для функций из Т 0 можно задавать произвольные значения только на 2 n - 1 наборе значений переменных, то есть

,

где - множество функций, сохраняющих 0 и зависящих от n переменных.

Покажем, что Т 0 - замкнутый класс. Так как xÎT 0 , то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x.

Пусть . Тогда достаточно показать, что . Последнее вытекает из цепочки равенств

2. T 1 - класс функций, сохраняющих 1.

Обозначим через Т 1 класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), сохраняющих константу 1, то есть функций, для которых f(1, ... , 1) = 1.

Легко видеть, что есть функции, принадлежащие Т 1 , и функции, этому классу не принадлежащие:

1, x, xy, xÚy, xºy Î T 1 ;

0, , x+y Ï T 1 .

Из того, что x + y Ï T 0 следует, например, что x + y нельзя выразить через дизъюнкцию и конъюнкцию.

Результаты о классе Т 0 тривиально переносятся на класс Т 1 . Таким образом, имеем:

Т 1 - замкнутый класс;

.

3. L - класс линейных функций.

Обозначим через L класс всех функций алгебры логики f(x 1 , x 2 , ... , x n), являющихся линейными:

Легко видеть, что есть функции, принадлежащие L , и функции, этому классу не принадлежащие:

0, 1, x, x+y, x 1 º x 2 = x 1 + x 2 + 1, = x+1 Î L;

Докажем, например, что xÚy Ï L .

Предположим противное. Будем искать выражение для xÚy в виде линейной функции с неопределенными коэффициентами:

При x = y = 0 имеем a=0,

при x = 1, y = 0 имеем b = 1,

при x = 0, y = 1 имеем g = 1,

но тогда при x = 1, y = 1 имеем 1Ú 1 ¹ 1 + 1, что доказывает нелинейность функции xÚy.

Доказательство замкнутости класса линейных функций совершенно очевидно.

Поскольку линейная функция однозначно определяется заданием значений n+1 коэффициента a 0 , ... , a n , число линейных функций в классе L (n) функций, зависящих от n переменных равно 2 n+1 .

.

4. S - класс самодвойственных функций.

Определение класса самодвойственных функций основано на использовании так называемого принципа двойственности и двойственных функций.

Функция , определяемая равенством , называется двойственной к функции .

Очевидно, что таблица для двойственной функции (при стандартной упорядоченности наборов значений переменных) получается из таблицы для исходной функции инвертированием (то есть заменой 0 на 1 и 1 на 0) столбца значений функции и его переворачиванием.

Легко видеть, что

(x 1 Ú x 2)* = x 1 Ù x 2 ,

(x 1 Ù x 2)* = x 1 Ú x 2 .

Из определения вытекает, что (f*)* = f, то есть функция f является двойственной к f*.

Пусть функция выражена с помощью суперпозиции через другие функции. Спрашивается, как построить формулу, реализующую ? Обозначим через = (x 1 , ... , x n) все различные символы переменных, встречающиеся в наборах .

Теорема 2.6. Если функция j получена как суперпозиция функций f, f 1 , f 2 , ... , f m , то есть

функция, двойственная к суперпозиции, есть суперпозиция двойственных функций.

Доказательство .

j*(x 1 ,...,x n) = ` f(`x 1 ,...,`x n) =

Теорема доказана. ð

Из теоремы вытекает принцип двойственности: если формула А реализует функцию f(x 1 , ... , x n), то формула, полученная из А заменой входящих в нее функций на двойственные им, реализует двойственную функцию f*(x 1 , ... , x n).

Обозначим через S класс всех самодвойственных функций из P 2:

S = {f | f* = f }

Легко видеть, что есть функции, принадлежащие S, и функции, этому классу не принадлежащие:

0, 1, xy, xÚy Ï S .

Менее тривиальным примером самодвойственной функции является функция

h(x, y, z) = xy Ú xz Ú yz;

используя теорему о функции, двойственной к суперпозиции, имеем

h*(x, y, z)= (x Ú y)Ù(x Ú z) Ù (y Ù z) = x y Ú x z Ú y z; h = h* ; h Î S.

Для самодвойственной функции имеет место тождество

так что на наборах и , которые мы будем называть противоположными, самодвойственная функция принимает противоположные значения. Отсюда следует, что самодвойственная функция полностью определяется своими значениями на первой половине строк стандартной таблицы. Поэтому число самодвойственных функций в классе S (n) функций, зависящих от n переменных, равно:

.

Докажем теперь, что класс S замкнут. Так как xÎS , то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x. Пусть . Тогда достаточно показать, что . Последнее устанавливается непосредственно:

5. М - класс монотонных функций.

Прежде чем определять понятие монотонной функции алгебры логики, необходимо ввести отношение упорядоченности на множестве наборов ее переменных.

Говорят, что набор предшествует набору (или “не больше ”, или “меньше или равен ”), и применяют обозначение , если a i £ b i для всех i = 1, ... , n. Если и , то будем говорить, что набор строго предшествует набору (или “строго меньше”, или “меньше” набора ), и использовать обозначение . Наборы и называются сравнимыми, если либо , либо .В случае, когда ни одно из этих соотношений не выполняется, наборы и называются несравнимыми. Например, (0, 1, 0, 1) £ (1, 1, 0, 1), но наборы (0, 1, 1, 0) и (1, 0, 1, 0) несравнимы. Тем самым отношение £ (его часто называют отношением предшествования) является частичным порядком на множестве В n . Ниже приведены диаграммы частично упорядоченных множеств В 2 , В 3 и В 4 .




Введенное отношение частичного порядка - исключительно важное понятие, далеко выходящее за рамки нашего курса.

Теперь мы имеем возможность определить понятие монотонной функции.

Функция алгебры логики называется монотонной , если для любых двух наборов и , таких, что , имеет место неравенство . Множество всех монотонных функций алгебры логики обозначаетcя через М, а множество всех монотонных функций, зависящих от n переменных - через М (n) .

Легко видеть, что есть функции, принадлежащие M , и функции, этому классу не принадлежащие:

0, 1, x, xy, xÚy Î M;

x+y, x®y, xºy Ï M .

Покажем, что класс монотонных функций М - замкнутый класс. Так как xÎМ, то для обоснования замкнутости достаточно показать замкнутость относительно операции суперпозиции, поскольку операция замены переменных есть частный случай суперпозиции с функцией x.

Пусть . Тогда достаточно показать, что .

Пусть - наборы переменных, соответственно, функций j, f 1 , ... , f m , причем множество переменных функции j состоит из тех и только тех переменных, которые встречаются у функций f 1 , ... , f m . Пусть и - два набора значений переменной , причем . Эти наборы определяют наборы значений переменных , такие, что . В силу монотонности функций f 1 , ... , f m

и в силу монотонности функции f

Отсюда получаем

Число монотонных функций, зависящих от n переменных, точно неизвестно. Легко может быть получена оценка снизу:

где - есть целая часть от n/2.

Так же просто получается слишком завышенная оценка сверху:

Уточнение этих оценок - важная и интересная задача современных исследований.

Критерий полноты

Теперь мы в состоянии сформулировать и доказать критерий полноты (теорему Поста), определяющий необходимые и достаточные условия полноты системы функций. Предварим формулировку и доказательство критерия полноты несколькими необходимыми леммами, имеющими и самостоятельный интерес.

Лемма 2.7. Лемма о несамодвойственной функции.

Если f(x 1 , ... , x n)Ï S , то из нее путем подстановки функций x и `x можно получить константу.

Доказательство . Так как fÏS, то найдется набор значений переменных
=(a 1 ,...,a n) такой, что

f(`a 1 ,...,`a n) = f(a 1 ,...,a n)

Заменим аргументы в функции f:

x i заменяется на ,

то есть положим , и рассмотрим функцию

Тем самым мы получили константу (правда, неизвестно, какая это константа: 0 или 1). ð

Лемма 2.8. Лемма о немонотонной функции.

Если функция f(x 1 ,...,x n) немонотонна, f(x 1 ,...,x n) Ï M, то из нее путем замены переменных и подстановки констант 0 и 1 можно получить отрицание.

Доказательство . Так как f(x 1 ,...,x n) Ï M, то найдутся наборы и значений ее переменных, , , такие что , причем хотя бы для одного значения i имеет место a i < b i . Выполним следующую замену переменных функции f:

x i заменим на

После такой подстановки получим функцию одной переменной j(x), для которой имеем:

Это означает, что j(x)=`x. Лемма доказана. ð

Лемма 2.9. Лемма о нелинейной функции.

Если f(x 1 ,...,x n) Ï L , то из нее путем подстановки констант 0, 1 и использования функции `x можно получить функцию x 1 &x 2 .

Доказательство . Представим f в виде ДНФ (например, совершенной ДНФ) и воспользуемся соотношениями:

Пример . Приведем два примера применения указанных преобразований.

Таким образом, функция, записанная в дизъюнктивной нормальной форме, после применения указанных соотношений, раскрытия скобок и несложных алгебраических преобразований переходит в полином по mod 2 (полином Жегалкина):

где A 0 константа, а А i - конъюнкция некоторых переменных из числа x 1 ,..., x n , i = 1, 2, ... , r.

Если каждая конъюнкция A i состоит лишь из одной переменной, то f - линейная функция, что противоречит условию леммы.

Следовательно, в полиноме Жегалкина для функции f найдется член, в котором содержится не менее двух сомножителей. Без ограничения общности можно считать, что среди этих сомножителей присутствуют переменные x 1 и x 2 . Тогда полином можно преобразовать следующим образом:

f = x 1 x 2 f 1 (x 3 ,..., x n) + x 1 f 2 (x 3 ,..., x n) + x 2 f 3 (x 3 ,..., x n) + f 4 (x 3 ,..., x n),

где f 1 (x 3 ,..., x n) ¹ 0 (в противном случае в полином не входит конъюнкция, содержащая конъюнкцию x 1 x 2).

Пусть (a 3 ,...,a n) таковы, что f 1 (a 3 ,...,a n) = 1. Тогда

j(x 1 ,x 2) = f(x 1 ,x 2 , a 3 ,...,a n) = x 1 x 2 +ax 1 +bx 2 +g ,

где a, b, g - константы, равные 0 или 1.

Воспользуемся операцией отрицания, которая у нас имеется, и рассмотрим функцию y(x 1 ,x 2), получающуюся из j(x 1 ,x 2) следующим образом:

y(x 1 ,x 2) = j(x 1 +b, x 2 +a)+ab+g.

Очевидно, что

y(x 1 ,x 2) =(x 1 +b)(x 2 +a)+a(x 1 +b)+b(x 2 +a)+g+ab+g = x 1 x 2 .

Следовательно,

y(x 1 ,x 2) = x 1 x 2 .

Лемма доказана полностью.ð

Лемма 2.10. Основная лемма критерия полноты.

Если в классе F={ f } функций алгебры логики содержатся функции, не сохраняющие единицу, не сохраняющие 0, несамодвойственные и немонотонные:

то из функций этой системы операциями суперпозиции и замены переменных можно получить константы 0, 1 и функцию .

Доказательство . Рассмотрим функцию . Тогда

.

Возможны два случая последующих рассмотрений, в дальнейшем изложении обозначенные как 1) и 2).

1). Функция на единичном наборе принимает значение 0:

.

Заменим все переменные функции переменной x . Тогда функция

есть , ибо

и .

Возьмем несамодвойственную функцию . Так как функцию мы уже получили, то по лемме о несамодвойственной функции (лемма 2.7. ) из можно получить константу. Вторую константу можно получить из первой, используя функцию . Итак, в первом рассмотренном случае получены константы и отрицание. . Второй случай, а вместе с ним и основная лемма критерия полноты, полностью доказаны. ð

Теорема 2.11. Критерий полноты систем функций алгебры логики (теорема Поста).

Для того, чтобы система функций F = {f i }была полной, необходимо и достаточно, чтобы она целиком не содержалась ни в одном из пяти замкнутых классов T 0 , T 1 , L , S, M, то есть для каждого из классов T 0 , T 1 , L , S, Mв F найдется хотя бы одна функция, этому классу не принадлежащая.

Необходимость . Пусть F - полная система. Допустим, что F содержится в одном из указанных классов, обозначим его через K, т.е. F Í K. Последнее включение невозможно, так как K - замкнутый класс, не являющийся полной системой.

Достаточность . Пусть система функций F = {f i }целиком не содержится ни в одном из пяти замкнутых классов T 0 , T 1 , L , S, M. Возьмем в Fфункции:

Тогда на основанииосновной леммы (лемма 2.10 ) из функции не сохраняющей 0, функции не сохраняющей 1, несамодвойственной и немонотонной функций можно получить константы 0, 1 и функцию отрицание :

.

На основании леммы о нелинейной функции (лемма 2.9 ) из констант, отрицания и нелинейной функции можно получить конъюнкцию:

.

Система функций - полная система по теореме о возможности представления любой функции алгебры логики в виде совершенной дизъюнктивной нормальной формы (заметим, что дизъюнкция может быть выражена через конъюнкцию и отрицание в виде ).

Теорема доказана полностью. ð

Примеры.

1. Покажем, что функция f(x,y) = x|y образует полную систему. Построим таблицу значений функции x½y:

x y x|y

f(0,0) = 1, следовательно, x | yÏT 0 .

f(1,1) = 0, следовательно, x | yÏT 1 .

f(0,0) = 1, f(1,1) = 0, следовательно, x | yÏM .

f(0,1) = f(1,0) = 1, - на противоположных наборах x | y принимает одинаковые значения, следовательно x | yÏS .

Наконец, , что означает нелинейность функции
x | y.

На основании критерия полноты можно утверждать, что f(x,y) = x | y образует полную систему. ð

2. Покажем, что система функций образует полную систему.

Действительно, .

Тем самым среди функций нашей системы найдены: функция, не сохраняющая 0, функция, не сохраняющая 1, несамодвойственная, немонотонная и нелинейная функции. На основании критерия полноты можно утверждать, что система функций образует полную систему.ð

Таким образом мы убедились, что критерий полноты дает конструктивный и эффективный способ выяснения полноты систем функций алгебры логики.

Сформулируем теперь три следствия из критерия полноты.

Следствие 1 . Всякий замкнутый класс Kфункций алгебры логики, не совпадающий со всем множеством функций алгебры логики (K¹P 2), содержится по крайней мере в одном из построенных замкнутых классов.

Определение. Замкнутый класс K называется предполным , если K неполный и для любой функции fÏ Kкласс K È {f}- полный.

Из определения следует, что предполный класс является замкнутым.

Следствие 2. В алгебре логики существует только пять предполных классов, а именно:T 0 ,T 1 , L , M , S .

Для доказательства следствия нужно проверить только то, что ни один из этих классов не содержится в другом, что подтверждается, например, следующей таблицей принадлежности функций различным классам:

T 0 T 1 L S M
+ - + - +
- + + - +
- - + + -

Следствие 3. Из всякой полной системы функций можно выделить полную подсистему, содержащую не более четырех функций.

Из доказательства критерия полноты следует, что можно выделить не более пяти функций. Из доказательства основной леммы (лемма 2.10 ) следует, что либо несамодвойственна, либо не сохраняет единицу и не монотонна. Поэтому нужно не более четырех функций.

Познакомимся с понятием суперпозиции (или наложения) функций, которая состоит в том, что вместо аргумента данной функции подставляется некоторая функция от другого аргумента. Например, суперпозиция функций даёт функцию аналогично получаются и функции

В общем виде, предположим, что функция определена в некоторой области а функция определена в области причем значения ее все содержатся в области Тогда переменная z, как говорят, через посредство у, и сама является функцией от

По заданному из сначала находят соответствующее ему (по правилу, характеризуемому знаком значение у из У, а затем устанавливают соответствующее этому значению у (по правилу,

характеризуемому знаком значение его и считают соответствующим выбранному х. Полученная функция от функции или сложная функция и есть результат суперпозиции функций

Предположение, что значения функции не выходят за пределы той области У, в которой определена функция весьма существенно: если его опустить, то может получиться и нелепость. Например, полагая мы можем рассматривать лишь такие значения х, для которых ибо иначе выражение не имело бы смысла.

Мы считаем полезным здесь же подчеркнуть, что характеристика функции, как сложной, связана не с природой функциональной зависимости z от х, а лишь со способом задания этой зависимости. Например, пусть для у в для Тогда

Здесь функция оказалась заданной в виде сложной функции.

Теперь, когда полностью выяснено понятие суперпозиции функций, мы можем точно охарактеризовать простейший из тех классов функций, которые изучаются в анализе: это, прежде всего, перечисленные выше элементарные функции а затем - все те, которые из них получаются с помощью четырёх арифметических действий и суперпозиций, последовательно применённых конечное число раз. Про них говорят, что они выражаются через элементарные в конечном виде; иногда их все также называют элементарными.

Впоследствии, овладев более сложным аналитическим аппаратом (бесконечные ряды, интегралы), мы познакомимся и с другими функциями, также играющими важную роль в анализе, но уже выходящими за пределы класса элементарных функций.


Тема: «Функция: понятие, способы задания, основные характеристики. Обратная функция. Суперпозиция функций.»

Эпиграф урока:

«Изучать что-либо и не задумываться над

выученным - абсолютно бесполезно.

Задумываться над чем-либо, не изучив

предварительно предмет раздумий-

Конфуций.

Цель и психолого-педагогические задачи урока :

1) Общеобразовательная (нормативная) цель : повторить со студентами определение и свойства функции. Ввести понятие суперпозиции функций.

2) Задачи математического развития студентов : на нестандартном учебно-математическом материале продолжить развитие ментального опыта учащихся, содержательной когнитивной структуры их математического интеллекта, в том числе, способностей к логико-дедуктивному и индуктивному, аналитическому и синтетическому обратимому мышлению, к алгебраическому и образно-графическому мышлению, к содержательному обобщению и конкретизации, к рефлексии и самостоятельности как метакогнитивной способности студентов; продолжить развитие культуры письменной и устной речи как психологических механизмов учебно-математического интеллекта.

3) Воспитательные задачи : продолжить личностное воспитание у студентов познавательного интереса к математике, ответственности, чувства долга, академической самостоятельности, коммуникативного умения сотрудничать с группой, преподавателем, согруппниками; аутогогической способности к соревновательной учебно-математической деятельности , стремления к высоким и высшим ее результатам (акмеический мотив).


Тип урока : изучение нового материала; по критерию ведущего математического содержания - урок-практикум; по критерию типа информационного взаимодействия учащихся и преподавателя – урок сотрудничества.

Оборудование урока:

1. Учебная литература:

1) Кудрявцев математического анализа: Учеб. для студентов университетов и вузов. В 3 т. Т. 3. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1989. – 352 с. : ил.

2) Демидович задач и упражнений по математическому анализу. – 9-е изд. – М.: Издательство «Наука», 1977.

2. Иллюстрации.

Ход урока .

1.Объявление темы и главной образовательной цели урока; стимулирование чувства долга, ответственности, познавательного интереса студентов при подготовке к сессии .

2.Повторение материала по вопросам.

a) Дать определение функции.

Одним из основных математических понятий является понятие функции. Понятие функции связано с установлением зависимости между элементами двух множеств.

Пусть даны два непустых множества и . Соответствие f, которое каждому элементу сопоставляет один и только один элемент , называется функцией и записывается y = f(x). Говорят еще, что функция f отображает множество на множество .

https://pandia.ru/text/79/018/images/image003_18.gif" width="63" height="27">.gif" width="59" height="26"> называется множеством значений функции f и обозначается E(f).

б) Числовые функции. График функции. Способы задания функций.

Пусть задана функция .

Если элементами множеств и являются действительные числа, то функцию f называют числовой функцией . Переменная x при этом называется аргументом или независимой переменной, а y – функцией или зависимой переменной (от x). Относительно самих величин x и y говорят, что они находятся в функциональной зависимости .

Графиком функции y = f(x) называется множество всех точек плоскости Oxy, для каждой из которых x является значением аргумента, а y – соответствующим значением функции.

Чтобы задать функцию y = f(x), необходимо указать правило, позволяющее, зная x, находить соответствующее значение y.

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задается в виде одной или нескольких формул или уравнений.

Например:

Если область определения функции y = f(x) не указана, то предполагается, что она совпадает с множеством всех значений аргумента, при которых соответствующая формула имеет смысл.

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию y = f(x).

Графический способ : задается график функции.

Преимуществом графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задается таблицей ряда значений аргумента и соответствующих значений функции. Например, известные таблицы значений тригонометрических функций, логарифмические таблицы.

в) Основные характеристики функции.

1. Функция y = f(x),определенная на множестве D, называется четной , если выполняются условия и f(-x) = f(x); нечетной , если выполняются условия и f(-x) = -f(x).

График четной функции симметричен относительно оси Oy, а нечетной – относительно начала координат. Например, – четные функции; а y = sinx, https://pandia.ru/text/79/018/images/image014_3.gif" width="73" height="29"> – функции общего вида, т. е. не четные и не нечетные.


2.Пусть функция y = f(x) определена на множестве D и пусть . Если для любых значений аргументов из неравенства вытекает неравенство: , то функция называется возрастающей на множестве ; если , то функция называется неубывающей на https://pandia.ru/text/79/018/images/image021_1.gif" width="117" height="28 src=">то функция наз. убывающей на ; - невозрастающей .

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве https://pandia.ru/text/79/018/images/image023_0.gif" width="13" height="13">D значение (x+T)D и выполняется равенство f(x+T) = f(x).

Для построения графика периодической функции периода T достаточно построить его на любом отрезке длины T и периодически продолжить его во всю область определения.

Отметим основные свойства периодической функции.

1) Алгебраическая сумма периодических функций, имеющих один и тот же период T, есть периодическая функция с периодом T.

2) Если функция f(x) имеет период T, то функция f(ax) имеет период T/a.

г) Обратная функция.

Пусть задана функция y = f(x) с областью определения D и множеством значений E..gif" width="48" height="22">, то определена функция x = z(y) с областью определения E и множеством значений D. Такая функция z(y) называется обратной к функции f(x) и записывается в следующем виде: . Про функции y = f(x) и x = z(y) говорят, что они являются взаимно обратными. Чтобы найти функцию x = z(y), обратную к функции y = f(x), достаточно решить уравнение f(x) = y относительно x.

Примеры :

1. Для функции y = 2x обратной функцией является функция x = ½ y;

2. Для функции обратной функцией является функция .

Из определения обратной функции вытекает, что функция y = f(x) имеет обратную тогда и только тогда, когда f(x) задает взаимно однозначное соответствие между множествами D и E. Отсюда следует, что любая строго монотонная функция имеет обратную . При этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

3. Изучение нового материала.

Сложная функция.

Пусть функция y = f(u) определена на множестве D, а функция u = z(x) на множестве , причем для соответствующее значение . Тогда на множестве определена функция u = f(z(x)), которая называется сложной функцией от x (или суперпозицией заданных функций, или функцией от функции ).

Переменную u = z(x) называют промежуточным аргументом сложной функции.

Например, функция y = sin2x есть суперпозиция двух функций y = sinu и u = 2x. Сложная функция может иметь несколько промежуточных аргументов.

4. Решение нескольких примеров у доски.

5. Заключение урока.

1) теоретико-прикладные итоги практического занятия; дифференцированная оценка уровня ментального опыта учащихся; уровня усвоения ими темы, компетентности, качества устной и письменной математической речи; уровня проявленного творчества; уровня самостоятельности и рефлексии; уровня инициативы, познавательного интереса к отдельным методам математического мышления; уровней сотрудничества, интеллектуальной состязательности, стремления к высоким показателям учебно-математической деятельности и др.;

2) объявление аргументированных отметок, поурочного балла.

- (позднелат. superpositio, – наложение, от лат. superpositus – положенный наверх) (композиция) – операция логико математич. исчислений, заключающаяся в получении из к. л. данных функций f и g данного исчисления новой функции g (f) (выражение g… … Философская энциклопедия

Термин суперпозиция (наложение) может относиться к следующим понятиям: Суперпозиция композиция функций (сложная функция) Принцип суперпозиции принцип в физике и математике, описывающий наложение процессов (например, волн) и, как следствие,… … Википедия

Композиция функций, составление из двух функций сложной функции … Математическая энциклопедия

У этого термина существуют и другие значения, см. Суперпозиция. Квантовая механика … Википедия

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

В теории дискретных функциональных систем булевой функцией называют функцию типа, где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия

Один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… … Философская энциклопедия

Функция, вычисление значений к рой может быть проведено с помощью заранее заданной эффективной процедуры, или алгоритма. Характерная черта вычислительных процессов вычисление искомых величин задач происходит последовательно из данных исходных… … Математическая энциклопедия

Необходимо перенести содержимое этой статьи в статью «Дифференцирование сложной функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

- (лат. compositio составление, связывание, сложение, соединение): В Викисловаре есть статья «композиция» Искусство Композиция (изобразительное искусство) организующий компонент художественной формы, придающий прои … Википедия

Книги

  • Дискретная математика. Основные теоретико-множественные конструкции. Часть VI , А. И. Широков. Пособие представляет собой VI часть раздела «Основные теоретикомножественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции,…