Сигналы и линейные системы. Корреляционный анализ дискретных сигналов Корреляционная функция двух сигналов для чайников

С физической точки зрения корреляционная функция характеризует взаимосвязь или взаимозависимость двух мгновенных значений одного или двух различных сигналов в моменты времени и . В первом случае корреляционную функцию часто называют автокорреляционной, а во втором - взаимнокорреляционной. Корреляционные функции детерминированных процессов зависят только от .

Если заданы сигналы и , то корреляционные функции определяют следующими выражениями:

- взаимнокорреляционная функция; (2.66)

- автокорреляционная функция. (2.67)

Если и - два периодических сигнала с одинаковым периодом T , то очевидно, что их корреляционная функция тоже является периодической с периодом Т и, следовательно, она может быть разложена в ряд Фурье.

Действительно, если в выражении (2.66) разложим в ряд Фурье сигнал , то получим

(2.68)

где и - комплексные амплитуды n -й гармоники сигналов и соответственно, - комплексно-сопряженный с коэффициент. Коэффициенты разложения взаимно корреляционной функции можно найти как коэффициенты ряда Фурье

. (2.69)

Частотное разложение автокорреляционной функции легко получить из формул (2.68) и (2.69), положив , тогда

. (2.70)

А так как и, следовательно,

, (2.71)

то автокорреляционная функция - четная и поэтому

. (2.72)

Четность автокорреляционной функции позволяет ее разложить в тригонометрический ряд Фурье по косинусам

В частном случае, при , получим:

.

Таким образом, автокорреляционная функция при представляет собой полную среднюю мощность периодического сигнала , равную сумме средних мощностей всех гармоник.

Частотное представление импульсных сигналов

В предыдущем рассмотрении предполагалось, что сигналы непрерывны, однако при автоматической обработке информации часто используются и импульсные сигналы, а также преобразование непрерывных сигналов в импульсные. Это требует рассмотрения вопросов частотного представления импульсных сигналов.

Рассмотрим модель преобразования непрерывного сигнала в импульсную форму, представленную на рис.2.6а.



Пусть на вход импульсного модулятора поступает непрерывный сигнал (рис.2.6б). Импульсный модулятор формирует последовательность единичных импульсов (рис.2.6в) с периодом Т и длительностью импульсов t , причем . Математическую модель такой последовательности импульсов можно описать в виде функции :

(2.74)

где k - номер импульса в последовательности.

Выходной сигнал импульсного модулятора (рис.2.6г) можно представить в виде:

.

На практике желательно иметь частотное представление последовательности импульсов. Для этого функцию , как периодическую, можно представить в виде ряда Фурье:

, (2.75)

- спектральные коэффициенты разложения в ряд Фурье; (2.76)

Частота следования импульсов;

n - номер гармоники.

Подставляя в выражение (2.76) соотношение (2.74), найдем :

.

Подставляя (2.76) в (2.74), получим:

(2.78)

Преобразуем разность синусов, тогда

. (2.79)

Введем обозначение фазы n -ой гармоники

. (2.81)

Таким образом, последовательность единичных импульсов содержит наряду с постоянной составляющей бесконечное число гармоник с уменьшающейся амплитудой. Амплитуда k -ой гармоники определяется из выражения:

При цифровой обработке сигналов проводится дискретизация (квантование) по времени, то есть преобразование непрерывного сигнала в последовательность коротких импульсов. Как показано выше, любая последовательность импульсов имеет довольно сложный спектр, поэтому возникает естественный вопрос, каким образом процесс дискретизации по времени влияет на частотный спектр исходного непрерывного сигнала.

Для исследования этого вопроса рассмотрим математическую модель процесса дискретизации по времени, представленную на рис.2.7а.

Импульсный модулятор (ИМ) представляется в виде модулятора с несущей в виде идеальной последовательности очень коротких импульсов (последовательности d -функций) , период следования которых равен Т (рис.2.7б).

На вход импульсного модулятора поступает непрерывный сигнал (рис.2.7в), а на выходе образуется импульсный сигнал (рис.2.7г).


Тогда модель идеальной последовательности d -функций можно описать следующим выражением

Корреляционная функция сигнала – это временная характеристика,

дающая представление о скорости изменения сигнала во времени, а также о длительности сигнала без разложения его на гармонические составляющие.

Различают автокорреляционную и взаимнокорреляционную функции. Для детерминированного сигнала f (t ) автокорреляционная функция определяется выражением

где – величина временного сдвига сигнала.

характеризует степень связи(корреляции) сигнала f (t ) со своей

копией, сдвинутой на величину по оси времени. Построим автокорреляционную функцию (АКФ) для прямоугольного импульса f (t ) . Сигнал сдвинут на в сторону опережения, как показано на рис. 6.25.

На графике каждому значению соответствует свое произведение и площадь под графиком функции . Численные

значения таких площадей для соответствующих τ и дают ординаты функции

С увеличением τ убывает (не обязательно монотонно) и при

Т. е. больше, чем длительность сигнала, равна нулю.

– периодический сигнал, то АКФ K f (t ) =

f (t ) × f t(+ t ) dt и

является также периодической функцией с периодом T .

Рассмотрим основные свойства автокорреляционной функции:

1. АКФ является четной функцией , т. е. и с увеличением функция убывает.

2. АКФ достигает max при , так как любой сигнал полностью коррелирован с самим собой. При этом максимальное значение АКФ равно энергии

сигнала, т. е.

E = K f (0 ) = ò f 2 (t ) dt . Для периодического сигнала

средняя мощность сигнала.

и квадрат модуля спектральной плотности

между собой прямым и обратным преобразованием Фурье.

Чем шире спектр сигнала, тем меньше интервал корреляции, т.е. величина сдвига , в пределах которого корреляционная функция отлична от нуля. Соответственно, чем больше интервал корреляции сигнала, тем уже его спектр.

Корреляционная функция может быть использована и для оценки степени связи между двумя различными сигналами f 1 (t ) и f 2 (t ) сдвинутыми на время

В этом случае она называется взаимной корреляционной функцией(ВКФ) и определяется выражением:

Взаимно-корреляционная функция не обязательно является чётной относительно τ и не обязательно достигает максимума при. Построение ВКФ для двух треугольных сигналов f 1 (t ) и f 2 (t ) приведено на рис. 6.26. При сдвиге

сигнала f 2 (t ) влево (t > 0, рис. 6.26, а) корреляционная функция сигнала сначала возрастает, затем убывает до нуля при. При сдвиге сигнала f 2 (t ) вправо (t < 0, рис. 6.26, б) корреляционная функция сразу убывает. В результате получается нессиметричная относительно оси ординат ВКФ , показанная на рис. 6.26, в.

f1 (t)

f2 (t)

0 Т t

0 t -Т Т

f 1 (t ) × f 2 (t + t)

f1 (t)

f2 (t)

0 Т

Т Т + t

f 1 (t ) × f 2 (t - t)

6.9. Понятие о модулированных сигналах. Амплитудная модуляция

Для передачи информации на расстояние применяются высокочастотные сигналы. Передаваемая информация должна быть тем или иным способом -за ложена в высокочастотное колебание, которое называется несущим. Выбор ча-

стоты ω несущего сигнала зависит от многих факторов, но в любом случае ω

должна быть намного больше, чем наивысшая частота спектра передаваемого сообщения, т. е.

В зависимости от характера несущей различают два вида модуляции:

непрерывную – при гармоническом непрерывном во времени переносчике;

импульсную – при переносчике в виде периодической последовательности импульсов.

Сигнал, несущий в себе информацию, можно представить в виде

Если и – постоянные величины, то это простое гармоническое колебание, не несущее информации. Если и подвергаются принудительному изменению для передачи сообщения, то колебание становится модулированным.

Если изменяется A (t ), то это амплитудная модуляция, если угол – угловая. Угловая модуляция подразделяется на два вида: частотную (ЧМ) и фазовую (ФМ).

Так как , то и – медленно меняющиеся функции времени. Тогда можно считать, что при любом виде модуляции параметры сигнала

(1) (амплитуда, фаза и частота) изменяются настолько медленно, что в пределах одного периода высокочастотное колебание можно считать гармоническим. Эта предпосылка лежит в основе свойств сигналов и их спектров.

Амплитудная модуляция (АМ). При АМ огибающая амплитуд несущего сигнала изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота не изменяется, а начальная фаза может быть различной в зависимости от момента начала модуляции. Общее выражение (6.22) можно заменить на

Графическое представление амплитудно-модулирован-ного сигнала приведено на. 6.27. Здесь S (t ) – передаваемое непрерывное сообщение, амплитуда несущего гармонического ы- сокочастотного сигнала. Огибающая A (t ) изменяется по закону, воспроизводящему сообщение

S (t ).

Наибольшее, причём . – частота модулирующей функции, – начальная фаза огибающей. Такая модуляция называ-

ется тональной (6.28).

повторяет закон изменения исходного сигнала (рис. 6.28, б).

Корреляционный анализ может быть применен для проверки наличия полезного сигнала на фоне присутствующих шумов и помех, а также для проверки эффективности работы цифровых фильтров. В первом случае рассчитывается нормированная корреляционная функция между фрагментом полезного сигнала и числовым рядом дискретизированного входного зашумленного сигнала. По графику корреляционной функции визуально обнаруживают присутствие искомого сигнала в зашумленном входном сигнале.

Во втором случае, с целью проверки эффективности фильтрации, сначала рассчитывается корреляционная функция полезного эталонного сигнала, представленного числовым рядом, и отфильтрованного сигнала. После чего путем применения прямого дискретного преобразования Фурье к корреляционной функции получают коррелограмму. На полученном графике строят линию критического уровня с учетом ошибки фильтрации с использованием критерия Стьюдента. Эффективность фильтрации определяют визуально: выше критического уровня должны находиться только составляющие спектральной плотности полезного сигнала.

Для большей наглядности и объективности рассчитывается выборочный коэффициент корреляции между числовыми рядами эталонного (исходного полезного) и отфильтрованного сигналов. Коэффициент корреляции может принимать значения в интервале –1…1. Отрицательные значения говорят о том, что эталонный и отфильтрованный сигналы коррелируют в противофазе, т.е. при инверсии отфильтрованного сигнала. В случае если цифровой фильтр обладает хорошей эффективностью фильтрации от помех и шумов, коэффициент корреляции принимает значения, близкие к 1 или –1. Качество разных цифровых фильтров применительно к конкретному сигналу может быть определено путем сравнения рассчитанных коэффициентов корреляции.

Расчет корреляционной функции дискретных сигналов производится следующим образом. Для дискретных сигналов Х(i) и Y(i), i = 1… N выбирается фрагмент массива Y(i), i = 1… N/2 и рассчитывается корреляционная функция

где – величина сдвига в дискретах.

Коррелограмму или спектр корреляционной функции получают путем применения прямого дискретного преобразования Фурье к корреляционной функции:

- действительная часть спектра

;

- мнимая часть спектра

;

- модуль спектральной плотности корреляционной функции

Частоты, соответствующие значениям спектра ,

где – период дискретизации входного сигнала.

Расчет коэффициента корреляции между дискретными сигналами (числовыми рядами) Х(i) и Y(i), i = 1… N производится следующим образом.



Средние значения (математические ожидания) для числовых рядов Х(i) и Y(i):

Дисперсии

; .

Второй смешанный центральный момент

.

Выборочный коэффициент корреляции

2.6. Корреляционно-спектральный анализ детерминированных сигналов. Радиотехнические цепи и сигналы. Часть I

2.6. Корреляционно-спектральный анализ детерминированных сигналов

Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время. В частности такая ситуация имеет место в радиолокации, где отраженный от цели импульс поступает на вход приемника с задержкой во времени. Сравнение этих сигналов между собой, т.е. установление их взаимосвязи, при обработке позволяет определять параметры движения цели.

Для количественной оценки взаимосвязи сигнала и его сдвинутой во времени копии вводится характеристика

Которая называется автокорреляционной функцией (АКФ).

Для пояснения физического смысла АКФ приведем пример, где в качестве сигнала выступает прямоугольный импульс длительностью и амплитудой. На рис. 2.9 изображены импульс, его копия, сдвинутая на интервал времени и произведение . Очевидно, интегрирование произведения дает значение площади импульса, являющегося произведением . Это значение при фиксированном можно изобразить точкой в координатах. При изменении мы получим график автокорреляционной функции.

Найдем аналитическое выражение. Так как

то подставляя это выражение в (2.57), получим

Если осуществлять сдвижку сигнала влево, то аналогичными вычислениями нетрудно показать, что

Тогда объединяя (2.58) и (2.59), получим

Из рассмотренного примера можно сделать следующие важные выводы, распространяющиеся на сигналы произвольной формы:

1. Автокорреляционная функция непериодического сигнала с ростом убывает (необязательно монотонно для других видов сигналов). Очевидно, при АКФ также стремиться к нулю.

2. Своего максимального значения АКФ достигает при. При этом, равна энергии сигнала. Таким образом, АКФ является энергетической характеристикой сигнала. Как и следовало ожидать при сигнал и его копия полностью коррелированны (взаимосвязаны).

3. Из сравнения (2.58) и (2.59) следует, что АКФ является четной функцией аргумента, т.е.

Важной характеристикой сигнала является интервал корреляции . Под интервалом корреляции понимают интервал времени, при сдвижке на который сигнал и его копия становятся некоррелированными.

Математически интервал корреляции определяется следующим выражением

или поскольку – четная функция

На рис. 2.10 изображена АКФ сигнала произвольной формы. Если построить прямоугольник, по площади равный площади под кривой при положительных значениях (правая ветвь кривой), одна сторона которого равна, то вторая сторона будет соответствовать.

Найдем интервал корреляции для прямоугольного импульса. Подставляя (2.58) в (2.60) после несложных преобразований, получим:

что и следует из рис. 2.9.

По аналогии с автокорреляционной функцией степень взаимосвязи двух сигналов и оценивается взаимной корреляционной функцией (ВКФ)

Найдем взаимную корреляционную функцию двух сигналов: прямоугольного импульса с амплитудой и длительностью

и треугольного импульса той же амплитуды и длительности

Воспользовавшись (2.61) и вычисляя интегралы отдельно для и, получим:

Графические построения, иллюстрирующие вычисления ВКФ, приведены на рис. 2.11

Здесь пунктирными линиями показано исходное (при) положение треугольного импульса.

При выражение (2.61) преобразуется в (2.57). Отсюда следует, что АКФ является частным случаем ВКФ при полностью совпадающих сигналах.

Отметим основные свойства ВКФ.

1. Так же, как и автокорреляционная функция, ВКФ является убывающей функцией аргумента. При ВКФ стремиться к нулю.

2. Значения взаимной корреляционной функции при произвольных представляют собой значения взаимной энергии (энергии взаимодействия) сигналов и.

3. При взаимная корреляционная функция (в отличие от автокорреляционной) не всегда достигает максимума.

4. Если сигналы и описываются четными функциями времени, то ВКФ тоже четна. Если же хотя бы один из сигналов описывается нечетной функцией, то ВКФ так же нечетна. Первое утверждение легко доказать, если вычислить ВКФ двух прямоугольных импульсов противоположной полярности

Взаимная корреляционная функция таких сигналов

является четной функцией аргумента.

Что же касается второго утверждения рассмотренный пример вычисления ВКФ прямоугольного и треугольного импульсов доказывает его.

В некоторых прикладных задачах радиотехники используют нормированную АКФ

и нормированную ВКФ

где и – собственные энергии сигналов и. При значение нормированной ВКФ называют коэффициентом взаимной корреляции . Если , то коэффициент взаимной корреляции

Очевидно, значения лежат в пределах от -1 до +1. Если сравнить (2.65) с (1.32), то можно убедиться, что коэффициент взаимной корреляции соответствует значению косинуса угла между векторами и при геометрическом представлении сигналов.

Рассчитаем коэффициент взаимной корреляции для рассмотренных выше примеров. Так как энергия сигнала прямоугольного импульса составляет

а треугольного импульса

то коэффициент взаимной корреляции в соответствии с (2.62) и (2.65) будет равен. Что же касается второго примера, то для двух прямоугольных импульсов одинаковой амплитуды и длительности, но противоположной полярности, .

Экспериментально АКФ и ВКФ могут быть получены с помощью устройства, структурная схема которого изображена на рис. 2.12

При снятии АКФ на один из входов перемножителя поступает сигнал, а на второй – этот же сигнал, но задержанный на время. Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном. Изменяя время задержки, можно построить АКФ сигнала.

Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

где – наибольшее значение периода.

Найдем автокорреляционную функцию гармонического сигнала

где – круговая частота, – начальная фаза.

Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

1. АКФ периодического сигнала является периодической функцией с тем же периодом.

2. АКФ периодического сигнала является четной функцией аргумента.

3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность.

4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

Следует также отметить, что интервал корреляции периодического сигнала.

А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.25)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала:

B s (0) =s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.25):

B s (t) =s(t-t) s(t) dt = s(t) s(t-t) dt = B s (-t). (2.25")

С учетом четности, графическое представление АКФ производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (2.25) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания t, как правило, много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.25) функции s(t-t) вместо s(t+t).

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение стремятся к нулю.

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) =A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:

B s (t) = (1/Т)s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов также является периодической функцией с тем же периодом Т. Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать t=0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos w o (t-t) = cos (w o t-p/2) º sin w o t) и дают нулевое значение АКФ. При сдвиге на t=T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при t=3T/2 и повторением максимального значения при t=T=2p/w o (cos w o t-2p копии º cos w o t сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.11).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале, вычисление АКФ производится с нормировкой на длину интервала:

B s (t) =s(t) s(t+t) dt. (2.26)

Автокорреляция сигнала может оцениваться и функцией автокорреляционных коэффициентов, вычисление которых производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.25), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.27)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) =s 1 (t-t) s 2 (t) dt =s 2 (t) s 1 (t-t) dt = B 21 (-t)

Рис. 2.12. Сигналы и ВКФ

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.12, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.27) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

При t=0 сигналы ортогональны и значение B 12 (t)=0. Максимум В 12 (t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t). При вычислении значений B 21 (-t) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений t, а соответственно значения B 21 (-t) являются зеркальным (относительно оси t=0) отображением значений B 12 (t), и наоборот. На рис. 2.13 это можно видеть наглядно.

Рис. 2.13. Сигналы и ВКФ

Таким образом, для вычисления полной формы ВКФ числовая ось t должна включать отрицательные значения, а изменение знака t в формуле (2.27) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Функция коэффициентов взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

r sv (t) = cos j(t) = ás(t), v(t+t)ñ /||s(t)|| ||v(t)||. (2.28)

Значение коэффициентов взаимной корреляции может изменяться от -1 до 1.

  • 5 Спектральный анализ периодических сигналов. Условия Дирихле. Ряд Фурье.
  • 6 Спектральный анализ непериодических сигналов. Преобразование Фурье. Равенство Парсеваля.
  • 7 Представление непрерывных сигналов выборками. Теорема Котельникова. Влияние частоты дискретизации на возможность восстановления сигнала с помощью фильтра.
  • 8 Процесс интерполяции непрерывного сообщения. Простейшие виды интерполяции алгебраическими полиномами.
  • 13 Помехоустойчивое кодирование. Повышение верности в одностороннем и двустороннем каналах передачи
  • 14 Блочные систематические коды, свойства и способы представления
  • 15 Коды Хэмминга, свойства. Структурная схема кодера и декодера, принцип работы
  • 16 Общие свойства и способы представления циклических кодов.
  • 18 Аналоговые виды модуляции. Амплитудная модуляция. Амплитудно-модулированное колебание, временная и спектральная характеристики
  • 19 Аналоговые виды модуляции. Амплитудный модулятор.
  • 20 Аналоговые виды модуляции. Демодулятор ам-сигналов.
  • 21. Аналоговые виды модуляции. Балансная модуляция. Балансно-модулированное колебание, временная и спектральная характеристики. Модулятор и демодулятор бмк.
  • 22 Аналоговые виды модуляции. Однополосная модуляция. Методы формирования одной боковой полосы частот ам-колебания.
  • 24 Спектры фазо-модулированных и частотно-модулированных колебаний.
  • 25 Аналого-импульсные виды модуляции. Амплитудно-импульсная модуляция: аим-1 и аим-2. Модуляторы и демодуляторы аим сигналов.
  • 26 Широтно-импульсная модуляция: шим-1 и шим-2. Спектральное представление шим-сигнала. Модуляторы шим-сигналов.
  • 27 Фазо-импульсная модуляция. Модуляторы фим-сигналов.
  • 28 Частотно-импульсная модуляция. Детекторы чим-сигналов.
  • 29 Цифровые виды модуляции. Импульсно-кодовая модуляция. Дискретизация, квантование и кодирование.
  • 30 Дифференциальная икм. Структурная схема системы передачи с предсказанием. Структурная схема линейного предсказателя, принцип работы. Адаптивная дифференциальная икм.
  • 31 Дельта-модуляция. Принцип формирования сигнала дельта-модуляции. Адаптивная дельта-модуляция.
  • 32 Дискретные виды модуляции. Способы двухпозиционной (однократной) модуляции. Позиционность сигнала, кратность модуляции.
  • 33 Однократная абсолютная фазовая манипуляция. Фазовый манипулятор.
  • 34 Детектор фмн-сигналов.
  • 35 Манипулятор однократной относительной фазовой манипуляции.
  • 36 Демодулятор сигналов с однократной офмн.
  • 38 Принципы построения многоканальных систем передачи. Теоретические предпосылки разделения каналов. Частотное разделение каналов.
  • 39 Фазовое разделение каналов. Модулятор и демодулятор сигналов дофмн.
  • 40 Временное разделение каналов. Структурная схема многоканальной системы передачи с временным разделением каналов.
  • 41 Оптимальный прием сигналов. Задачи и критерии оптимального приема.
  • 42 Структурная схема приемника при полностью известных сигналах, принцип работы.
  • 9 Корреляционный анализ. Корреляционная функция, ее свойства. Вычисление корреляционной функции одиночного импульса и периодического сигнала

    Наряду со спектральным анализом корреляционный анализ играет большую роль в теории сигналов. Его смысл состоит в измерении степени сходства (различия) сигналов. Для этого служит корреляционная ф-ция.

    КФ представляет собой интеграл от произведения двух копий сигнала, сдвинутых друг отн. друга на время.

    Чем больше значение КФ, тем сильнее сходство. КФ обладает следующими свойствами:

    1. Значение КФ при

    равно энергии сигнала (интегралу от его квадрата)

    2. Является четной функцией

    3. Значение КФ при

    4. С ростом абс. значения КФ сигнала с конечной энергией затухает

    5. Если сигнал является ф-цией напряжения от времени, то размерность его КФ [

    ]

    В случае периодического сигнала (с периодом Т) КФ вычисляют, усредняя произведение сдвинутых копий в пределах одного периода:

    Набор свойств такой КФ изменяется:

    1. Значение КФ при

    равно средней мощности сигнала

    2. Свойство четности сохраняется.

    3. Значение КФ при

    является максимально возможным.

    4. КФ является периодической ф-цией (с тем же периодом, что и сигнал)

    5. Если сигнал не содержит дельта-функций, то его КФ непрерывна.

    6. Если сигнал является зависимостью U(t), то размерность КФ [

    ]

    КФ гармонического сигнала является гармонической ф-цией, которая не зависит от начальной фазы сигнала.

    10 Взаимная корреляционная функция, ее свойства. Вычисление взаимной корреляционной функции сигналов

    Взаимная корреляционная функция (ВКФ)- функция, показывающая степень сходства для сдвинутых во времени 2-ух различных сигналов.

    Общий вид:

    Для примера вычислим ВКФ 2-ух функций:



    При



    При



    При



    Объединяя результаты, можно записать:

    Свойства ВКФ:

    1)

    2)

    3)

    4) Если функции S 1 (t ) и S 2 (t ) не содержат дельта-функций, то их ВКФ не может иметь разрывов.

    5) Если в качестве сигнала выступает функция U (t ) , то размерность ВКФ

    11 Случайные процессы. Реализация случайного процесса. Законы распределения случайных процессов

    Иногда на практике приходится иметь дело с явлениями, протекание которых во времени непредсказуемо и в каждый момент времени описывается случайной величиной. Такие явления называются случайными процессами. Случайным процессом называется функция ζ(t ) неслучайного аргумента t (как правило, времени), которая при каждом фиксированном значении аргумента является случайной величиной. Например, температура в течение суток, регистрируемая самописцем. Значения, принимаемые процессом ζ(t ) в определенные моменты времени называются состояниями , а множество всех состояний – фазовым пространством случайного процесса. В зависимости от количества возможных состояний случайного процесса его фазовое пространство может быть дискретным или непрерывным. Если случайный процесс может изменять свое состояние лишь в определенные моменты времени, то такой процесс называется случайным процессом с дискретным временем ; а если в произвольные, то – процессом с непрерывным временем .

    Случайный процесс ζ(t ) называется стационарным , если распределение вероятностей его возможных состояний не изменяется во времени. Например, при ежесекундном подбрасывании игральной кости распределение вероятностей состояний соответствующего случайного процесса (рис.44, б ) не зависит (не изменяется) от времени (при этом все состояния ζ(t ) равновозможны). В противоположность этому, случайный процесс, характеризующий температуру окружающей среды, не является стационарным, т.к. для лета характерны более высокие температуры, чем для зимы.

    Распределение вероятностей состояний стационарного случайного процесса называется стационарным распределением .

    Существуют различные законы распределения среди них Равномерное, Гаусовское (нормальное)

    Равномерное : пусть некторая случ величина х может принимать значения х 1

    P(x)=система(0 при x х 2)

    Функцию распределения найдем путем интегрирования

    F(x)= система(0 при x x 2)

    Гауссово (нормальное) распределение . В теории случайных сигналов фундаментальное значение имеет гауссова плотность вероятности

    Согласно равенству (13.5), корреляционная функция отклика нелинейного устройства может быть следующим образом выражена через переходную функцию этого устройства:

    Двойной интеграл по равен, как это видно из сравнения с равенством (4.25), совместной характеристической функции величин записанной в виде функции комплексных переменных. Следовательно,

    Выражение (13.40) является основной формулой при анализе случайных воздействий на нелинейные устройства методом преобразований. Оставшаяся часть этой главы посвящена вычислению этого выражения для различных типов устройств и различных видов воздействий на них.

    Во многих задачах воздействие, подаваемое на вход системы, представляет собой сумму полезного сигнала и шума:

    где - выборочные функции статистически независимых вероятностных процессов. В таких случаях совместная характеристическая функция воздействия равна произведению характеристических функций сигнала и шума и равенство (13.40) принимает

    где - совместная характеристическая функция величин - совместная характеристическая функция величин и

    Гауссовский шум на входе. Если шум на входе устройства является выборочной функцией действительного гауссовского вероятностного процесса с нулевым математическим ожиданием, то, согласно равенству (8.23),

    где Корреляционная функция отклика в таком случае принимает вид

    Если теперь могут быть представлены в виде произведений функции от на функцию от или в виде сумм таких произведений, то двойной интеграл в последнем выражении может быть вычислен как произведение интегралов. Тот факт, что экспоненциальная функция может быть представлена через произведения функций от и вытекает из разложения ее в степенной ряд

    Поэтому корреляционная функция отклика нелинейного устройства при подале на вход его гауссовского шума может быть записана

    Синусоидальные сигналы.

    Предположим теперь, что сигнал на входе устройства представляет собой модулированную синусоиду, т. е. что

    где - выборочная функция низкочастотного вероятностного процесса (т. е. такого, у которого спектральная плотность отлична от нуля лишь в диапазоне частот, примыкающем к нулевой частоте и узком по сравнению с и где случайная величина распределена равномерно в интервале и не зависит от модулирующего сигнала и от шума. Характеристическая функция такого сигнала равна

    Разлагая экспоненту формуле Якоби-Энгера [выражение (13.20)], получаем

    Поскольку

    где мы получаем, что для амплитудно-модулированного синусоидального сигнала

    Корреляционную функцию отклика нелинейного устройства при подаче на вход его синусоидального сигнала и гауссовского шума можно теперь найти, подставляя (13.47) в (13.45). Определим функцию

    где и корреляционную функцию

    где осреднение производится по модулирующему сигналу; тогда корреляционная функция отклика будет равна

    Если как модулирующий сигнал, так и шум стационарны, то выражение (13.50) принимает вид

    Если входной сигнал представляет собой немодулированную синусоиду

    ибо в этом случае коэффициенты постоянны и равны друг другу.

    Составляющие сигнала и шума на выходе.

    Рассмотрим сейчас случай, когда шум на входе имеет форму смодулированной синусоиды. В этом случае корреляционная функция на выходе задается выражением (13.52). Разложим это выражение следующим образом:

    рассмотрим отдельные его слагаемые. Первое слагаемое соответствует постоянной составляющей на выходе устройства. Следующая группа слагаемых отвечает периодической части отклика и обусловлена в основном взаимодействием входного сигнала с самим собой. Остальные слагаемые соответствуют случайным колебаниям отклика, т. е. шуму на выходе. Те из

    этих оставшихся слагаемых, для которых обусловлены главным образом взаимодействием входного шума с самим собой, а те из них, для которых взаимодействием сигнала и шума на входе.

    Представим отклик нелинейного устройства в виде суммы среднего значения, периодических составляющих и случайной составляющей:

    Тогда корреляционная функция отклика может быть записана в виде

    где Сравнивая равенства (13.53) и (13.55), мы видим, что среднее значение отклика и амплитуды его периодических составляющих могут быть выражены непосредственно через коэффициенты

    Кроме того, корреляционною функцию случайной части отклика можно записать в виде

    где мы положим по определению в соответствии с (13.50)

    Следует отметить, что, строго говоря, все эти слагаемые являются функциями процесса, модулирующего входной сигнал.

    Решение вопроса о том, какие из -слагаемых в (13.62) определяют полезный выходной сигнал, зависит, конечно, от назначения нелинейного устройства. Если, например, устройство используется как детектор, то полезной является низкочастотная часть выходного сигнала. В этом случае полезному сигналу соответствует часть корреляционной функции, определяемая равенством

    С другой стороны, если устройство используется как нелинейный усилитель, то

    ибо в этом случае полезной является составляющая сигнала, сосредоточенная около несущей частоты входного сигнала

    Литература: [Л.1], с 77-83

    [Л.2], с 22-26

    [Л.3], с 39-43

    Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время

    При снятии АКФ на один из входов перемножителя поступает сигнал, а на второй – этот же сигнал, но задержанный на время. Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном. Изменяя время задержки, можно построить АКФ сигнала.

    Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

    До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

    , (2.66)

    а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

    , (2.67)

    где – наибольшее значение периода.

    Найдем автокорреляционную функцию гармонического сигнала

    ,

    где – круговая частота, – начальная фаза.

    Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

    .

    Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

    1. АКФ периодического сигнала является периодической функцией с тем же периодом.

    2. АКФ периодического сигнала является четной функцией аргумента.

    3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность.

    4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

    Следует также отметить, что интервал корреляции периодического сигнала.

    А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

    и.

    Воспользовавшись (2.67) и проводя несложные вычисления, получим

    ,

    где – разность начальных фаз сигналов и.

    Таким образом, взаимная корреляционная функция двух рассматриваемых сигналов содержит информацию о разности начальных фаз. Это важное свойство широко используется при построении различных радиотехнических устройств, в частности, устройств синхронизации некоторых систем радиоавтоматики и других.

    Так как и – вещественные и четные функции, выражения (2.69) и (2.70) можно записать соответственно в виде

    , (2.71)

    . (2.72)

    Рассмотренный корреляционно-спектральный анализ позволяет дать еще одну трактовку эффективной ширины спектра. Если известен энергетический спектр, то эффективная ширина спектра определяется так:

    . (2.73)

    Иными словами представляет собой сторону прямоугольника по площади равного площади под кривой одностороннего спектра, вторая сторона которого равна (рис.2.13). Очевидно, произведение эффективной ширины энергетического спектра на величину интервала корреляции есть величина постоянная

    .

    Таким образом, и в этом случае мы сталкиваемся с проявлением принципа неопределенности: чем больше интервал корреляции, тем меньше ширина энергетического спектра, и наоборот.

    Контрольные вопросы к главе 2

    1. Что такое система базисных тригонометрических функций?

    2. Как можно записать тригонометрический ряд Фурье?

    3. Дайте определение амплитудного и фазового спектра периодического сигнала.

    4. Какой характер носит спектр последовательности прямоугольных импульсов?

    5. Чем отличается спектр одиночного импульса от спектра периодической последовательности импульсов?

    6. Запишите прямое и обратное преобразование Фурье.

    7. Как найти эффективную длительность и эффективную ширину спектра прямоугольного сигнала?

    8. Что представляет собой спектр сигнала в виде дельта-функции?

    9. Дайте определение автокорреляционной функции детерминированного сигнала.

    10. Что такое взаимная корреляционная функция двух сигналов?

    11. Как найти коэффициент взаимной корреляции?

    12. Какими свойствами обладает автокорреляционная функция периодического сигнала?

    Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

    Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

    B s (t) = s(t) s(t+t) dt. (2.4.1)

    Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

    B s (0) = s(t) 2 dt = E s .

    Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.4.1):

    B s (t) = s(t) s(t-t) dt = s(t-t) s(t) dt = B s (-t).

    С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. Знак +t в выражении (2.4.1) означает, что при увеличении значений t от нуля копия сигнала s(t+t) сдвигается влево по оси t. На практике сигналы обычно также задаются на интервале положительных значений аргументов от 0-Т, что дает возможность продления интервала нулевыми значениями, если это необходимо для математических операций. В этих границах вычислений более удобным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.4.1) функции s(t-t):

    B s (t) = s(t) s(t-t) dt. (2.4.1")

    По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

    Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

    При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

    B s (t) = A 2 dt = A 2 (T-t).

    При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

    B s (t) = A 2 dt = A 2 (T+t).

    При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

    Обобщая вычисления, можем записать:

    B s (t) = .

    В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах этого периода:

    B s (t) = (1/Т) s(t) s(t-t) dt.

    При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов при этом также является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos(w 0 t+j 0) при T=2p/w 0 имеем:

    B s (t) = A cos(w 0 t+j 0) A cos(w 0 (t-t)+j 0) = (A 2 /2) cos(w 0 t).

    Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств КФ.

    Для сигналов, заданных на определенном интервале , вычисление АКФ также производится с нормировкой на длину интервала :

    B s (t) = s(t) s(t+t) dt. (2.4.2)

    В пределе, для непериодических сигналов с измерением АКФ на интервале Т:

    B s (t) = . (2.4.2")

    Автокорреляция сигнала может оцениваться и коэффициентом автокорреляции, вычисление которого производится по формуле (по центрированным сигналам):

    r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

    Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает степень сходства сдвинутых экземпляров двух разных сигналов и их взаимное расположение по координате (независимой переменной), для чего используется та же формула (2.4.1), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

    B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.4.3)

    При замене переменной t = t-t в формуле (2.4.3), получаем:

    B 12 (t) = s 1 (t-t) s 2 (t) dt = s 2 (t) s 1 (t-t) dt = B 21 (-t)

    Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.4.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.4.3) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).